Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.827
Filtrar
1.
Front Immunol ; 15: 1334616, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571946

RESUMO

Staphylococcus aureus is a highly successful pathogen infecting various body parts and forming biofilms on natural and artificial surfaces resulting in difficult-to-treat and chronic infections. We investigated the secreted cytokines and proteomes of isolated peripheral blood mononuclear cells (PBMCs) from healthy volunteers exposed to methicillin-resistant S. aureus (MRSA) biofilms or planktonic bacteria. Additionally, the cytokine profiles in sera from patients with community-acquired pneumonia (CAP) caused by S. aureus were investigated. The aim was to gain insights into the immune response involved and differentiate between the planktonic and sessile MRSA forms. We identified 321 and 298 targets that were significantly differently expressed in PBMCs when exposed to planktonic or biofilm-embedded bacteria, respectively. PBMCs exposed to planktonic MRSA cells secreted increased levels of TNF-α, while IL-18 was elevated when exposed to the biofilm. The machine-learning analyses of the cytokine profiles obtained for the in vitro PBMCs and CAP sera distinguished between the two types of bacteria forms based on cytokines IL-18, IL12, and IL-17, and with a lower importance IL-6. Particularly, IL-18 which has not been correlated with S. aureus biofilms so far might represent a suitable marker for monitoring chronification during MRSA infection to individualize the therapy, but this hypothesis must be proved in clinical trials.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Humanos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Citocinas , Staphylococcus aureus , Interleucina-18 , Proteoma , Plâncton , Leucócitos Mononucleares , Biofilmes
2.
Sci Rep ; 14(1): 8192, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589522

RESUMO

In Fram Strait, we combined underway-sampling using the remote-controlled Automated Filtration System for Marine Microbes (AUTOFIM) with CTD-sampling for eDNA analyses, and with high-resolution optical measurements in an unprecedented approach to determine variability in plankton composition in response to physical forcing in a sub-mesoscale filament. We determined plankton composition and biomass near the surface with a horizontal resolution of ~ 2 km, and addressed vertical variability at five selected sites. Inside and near the filament, plankton composition was tightly linked to the hydrological dynamics related to the presence of sea ice. The comprehensive data set indicates that sea-ice melt related stratification near the surface inside the sub-mesoscale filament resulted in increased sequence abundances of sea ice-associated diatoms and zooplankton near the surface. In analogy to the physical data set, the underway eDNA data, complemented with highly sampled phytoplankton pigment data suggest a corridor of 7 km along the filament with enhanced photosynthetic biomass and sequence abundances of sea-ice associated plankton. Thus, based on our data we extrapolated an area of 350 km2 in Fram Strait with enhanced plankton abundances, possibly leading to enhanced POC export in an area that is around a magnitude larger than the visible streak of sea-ice.


Assuntos
Plâncton , Zooplâncton , Animais , Biomassa , Plâncton/genética , Zooplâncton/genética , Fotossíntese , Fitoplâncton/genética , Regiões Árticas , Ecossistema , Camada de Gelo
3.
Food Chem ; 448: 139073, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574713

RESUMO

This study reported for the first time that Ascorbic acid (AA) could appreciably boost the efficiency of Octyl gallate (OG)-mediated photodynamic inactivation (PDI) on Escherichia coli and Staphylococcus aureus in planktonic and biofilm states. The combination of OG (0.075 mM) and AA (200 mM) with 420 nm blue light (212 mW/cm2) led to a >6 Log killing within only 5 min for E. coli and S. aureus and rapid eradication of biofilms. The mechanism of action appears to be the generation of highly toxic hydroxyl radicals (•OH) via photochemical pathways. OG was exposed to BL irradiation to generate various reactive oxygen radicals (ROS) and the addition of AA could transform singlet oxygen (1O2) into hydrogen peroxide (H2O2), which could further react with AA to generate enormous •OH. These ROS jeopardized bacteria and biofilms by nonspecifically attacking various biomacromolecules. Overall, this PDI strategy provides a powerful microbiological decontamination modality to guarantee safe food products.


Assuntos
Ácido Ascórbico , Biofilmes , Escherichia coli , Ácido Gálico , Ácido Gálico/análogos & derivados , Luz , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Ácido Ascórbico/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Ácido Gálico/farmacologia , Ácido Gálico/química , Escherichia coli/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Antibacterianos/farmacologia , Antibacterianos/química , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Plâncton/efeitos dos fármacos , Plâncton/efeitos da radiação , 60440
4.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612821

RESUMO

Antibiotic resistance is currently a global health emergency. Metallodrugs, especially metal coordination complexes, comprise a broad variety of candidates to combat antibacterial infections. In this work, we designed a new family of Schiff base zinc(II) complexes with iminopyridine as an organic ligand and different inorganic ligands: chloride, nitrate, and acetate. The antibacterial effect of the Zn(II) complexes was studied against planktonic bacterial cells of Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) strains. The results showed a moderate biocide activity in both types of planktonic bacteria, which arises from the metal complexation to the Schiff base ligand. Importantly, we confirmed the crucial effect of the metal, with Zn(II) improving the activity of Cu(II) counterparts previously reported. On the other hand, the impact of the inorganic ligands was not significant for the antibacterial effect but was relevant for the complex solubility. Finally, as proof of concept of topical antibacterial formulation, we formulated an emulsion containing the most lipophilic Zn(II) complex and confirmed a sustained release for 24 h in a vertical cell diffusion assay. The promising activity of iminopyridine Zn(II) complexes is potentially worth exploring in more detailed studies.


Assuntos
Complexos de Coordenação , Zinco , Zinco/farmacologia , Ligantes , Bases de Schiff/farmacologia , Nitratos , Complexos de Coordenação/farmacologia , Antibacterianos/farmacologia , Escherichia coli , Plâncton
5.
Glob Chang Biol ; 30(3): e17238, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38497342

RESUMO

The Western Antarctic Peninsula (WAP) experiences one of the highest rates of sea surface warming globally, leading to potential changes in biological communities. Long-term phytoplankton monitoring in Potter Cove (PC, King George Island, South Shetlands) from the 1990s to 2009 revealed consistently low biomass values, and sporadic blooms dominated by cold-water microplankton diatoms. However, a significant change occurred between 2010 and 2020, marked by a notable increase in intense phytoplankton blooms in the region. During this period, the presence of a nanoplankton diatom, Shionodiscus gaarderae, was documented for the first time. In some instances, this species even dominated the blooms. S. gaarderae is recognized for producing blooms in temperate waters in both hemispheres. However, its blooming in the northern Southern Ocean may suggest either a recent introduction or a range shift associated with rising temperatures in the WAP, a phenomenon previously observed in experimental studies. The presence of S. gaarderae could be viewed as a warning sign of significant changes already underway in the northern WAP plankton communities. This includes the potential replacement of microplankton diatoms by smaller nanoplankton species. This study, based on observations along the past decade, and compared to the previous 20 years, could have far-reaching implications for the structure of the Antarctic food web.


Assuntos
Diatomáceas , Fitoplâncton , Regiões Antárticas , Plâncton , Biomassa
6.
Sci Rep ; 14(1): 7240, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538671

RESUMO

A key control on the magnitude of coastal eutrophication is the degree to which currents quickly transport nitrogen derived from human sources away from the coast to the open ocean before eutrophication develops. In the Southern California Bight (SCB), an upwelling-dominated eastern boundary current ecosystem, anthropogenic nitrogen inputs increase algal productivity and cause subsurface acidification and oxygen (O 2 ) loss along the coast. However, the extent of anthropogenic influence on eutrophication beyond the coastal band, and the physical transport mechanisms and biogeochemical processes responsible for these effects are still poorly understood. Here, we use a submesoscale-resolving numerical model to document the detailed biogeochemical mass balance of nitrogen, carbon and oxygen, their physical transport, and effects on offshore habitats. Despite management of terrestrial nutrients that has occurred in the region over the last 20 years, coastal eutrophication continues to persist. The input of anthropogenic nutrients promote an increase in productivity, remineralization and respiration offshore, with recurrent O 2 loss and pH decline in a region located 30-90 km from the mainland. During 2013 to 2017, the spatially averaged 5-year loss rate across the Bight was 1.3 mmol m - 3 O 2 , with some locations losing on average up to 14.2 mmol m - 3 O 2 . The magnitude of loss is greater than model uncertainty assessed from data-model comparisons and from quantification of intrinsic variability. This phenomenon persists for 4 to 6 months of the year over an area of 278,40 km 2 ( ∼ 30% of SCB area). These recurrent features of acidification and oxygen loss are associated with cross-shore transport of nutrients by eddies and plankton biomass and their accumulation and retention within persistent eddies offshore within the SCB.


Assuntos
Ecossistema , Eutrofização , Humanos , Plâncton , Nitrogênio , Oxigênio
7.
Sensors (Basel) ; 24(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38544222

RESUMO

Bioluminescence is light produced by organisms through chemical reactions. In most cases, bioluminescent organisms produce light in response to mechanical stimulation, including from shear around objects moving in the water. Many phytoplankton and zooplankton are capable of producing bioluminescence, which is commonly measured as bioluminescence potential, defined as mechanically stimulated light measured inside of a chambered pump-through bathyphotometer. We have developed a numerical model of a pump-through bathyphotometer and simulated flow using Lagrangian particles as an approximation for bioluminescent marine plankton taxa. The results indicate that all particles remain in the detection chamber for a residence time of at least 0.25 s. This suggests that the total first flash of bioluminescent autotrophic and heterotrophic dinoflagellates will be measured based on the existing literature regarding their flash duration. We have found low sensitivity of particle residence time to variations in particle size, density, or measurement depth. In addition, the results show that a high percentage of organisms may experience stimulation well before the detection chamber, or even multiple stimulations within the detection chamber. The results of this work serve to inform the processing of current bioluminescent potential data and assist in the development of future instruments.


Assuntos
Dinoflagelados , Animais , Dinoflagelados/fisiologia , Fitoplâncton , Simulação por Computador , Plâncton , Zooplâncton
8.
Photochem Photobiol Sci ; 23(3): 539-560, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457119

RESUMO

Antibiotic resistance represents a pressing global health challenge, now acknowledged as a critical concern within the framework of One Health. Photodynamic inactivation of microorganisms (PDI) offers an attractive, non-invasive approach known for its flexibility, independence from microbial resistance patterns, broad-spectrum efficacy, and minimal risk of inducing resistance. Various photosensitizers, including porphyrin derivatives have been explored for pathogen eradication. In this context, we present the synthesis, spectroscopic and photophysical characteristics as well as antimicrobial properties of a palladium(II)-porphyrin derivative (PdF2POH), along with its zinc(II)- and free-base counterparts (ZnF2POH and F2POH, respectively). Our findings reveal that the palladium(II)-porphyrin complex can be classified as an excellent generator of reactive oxygen species (ROS), encompassing both singlet oxygen (Φ△ = 0.93) and oxygen-centered radicals. The ability of photosensitizers to generate ROS was assessed using a variety of direct (luminescence measurements) and indirect techniques, including specific fluorescent probes both in solution and in microorganisms during the PDI procedure. We investigated the PDI efficacy of F2POH, ZnF2POH, and PdF2POH against both Gram-negative and Gram-positive bacteria. All tested compounds proved high activity against Gram-positive species, with PdF2POH exhibiting superior efficacy, leading to up to a 6-log reduction in S. aureus viability. Notably, PdF2POH-mediated PDI displayed remarkable effectiveness against S. aureus biofilm, a challenging target due to its complex structure and increased resistance to conventional treatments. Furthermore, our results show that PDI with PdF2POH is more selective for bacterial than for mammalian cells, particularly at lower light doses (up to 5 J/cm2 of blue light illumination). This enhanced efficacy of PdF2POH-mediated PDI as compared to ZnF2POH and F2POH can be attributed to more pronounced ROS generation by palladium derivative via both types of photochemical mechanisms (high yields of singlet oxygen generation as well as oxygen-centered radicals). Additionally, PDI proved effective in eliminating bacteria within S. aureus-infected human keratinocytes, inhibiting infection progression while preserving the viability and integrity of infected HaCaT cells. These findings underscore the potential of metalloporphyrins, particularly the Pd(II)-porphyrin complex, as promising photosensitizers for PDI in various bacterial infections, warranting further investigation in advanced infection models.


Assuntos
Anti-Infecciosos , Fotoquimioterapia , Porfirinas , Animais , Humanos , Porfirinas/farmacologia , Porfirinas/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio , Staphylococcus aureus , Oxigênio Singlete/química , Plâncton , Paládio/farmacologia , Fotoquimioterapia/métodos , Anti-Infecciosos/química , Biofilmes , Oxigênio , Mamíferos
9.
J Food Sci ; 89(4): 1894-1916, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38477236

RESUMO

Food safety incidents caused by bacterial contamination have always been one of the public safety issues of social concern. Planktonic cells, viable but non-culturable (VBNC) cells, and biofilm cells of bacteria can coexist in food or food processing, posing more serious challenges to public health and safety by increasing bacterial survival and difficulty in detection. As a non-toxic, no side effect, and highly effective bacteriostatic substance, nisin has received wide attention from researchers. In this review, we summarized the species and biosynthesis of nisin, the effects of nisin alone or in combination with other treatments on planktonic and biofilm cells, and its applications in the fields of food, feed, and medicine by consulting numerous studies. Meanwhile, the mechanism of nisin on planktonic and biofilm cells was proposed based on existing researches. Nisin not only has antibacterial activity against most G+ bacteria but also exhibits a bacteriostatic effect on G- bacteria when combined with other antibacterial treatments. In addition to planktonic cells, nisin also has significant effects on bacterial cells in biofilms by changing the thickness, density, and composition of biofilms. Based on the three action processes of nisin on biofilms, we summarized the changes of bacteria in biofilms, including the causes of bacterial death and the formation of the VBNC state. We consider that research on the relationship between nisin and VBNC state should be strengthened.


Assuntos
Nisina , Nisina/farmacologia , Plâncton , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Biofilmes , Bactérias
10.
Arch Microbiol ; 206(4): 191, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520490

RESUMO

Escherichia coli are generally resistant to the lantibiotic's action (nisin and warnerin), but we have shown increased sensitivity of E. coli to lantibiotics in the presence of subinhibitory concentrations of polymyxins. Synergistic lantibiotic-polymyxin combinations were found for polymyxins B and M. The killing of cells at the planktonic and biofilm levels was observed for two collection and four clinical multidrug-resistant E. coli strains after treatment with lantibiotic-polymyxin B combinations. Thus, 24-h treatment of E. coli mature biofilms with warnerin-polymyxin B or nisin-polymyxin B leads to five to tenfold decrease in the number of viable cells, depending on the strain. AFM revealed that the warnerin and polymyxin B combination caused the loss of the structural integrity of biofilm and the destruction of cells within the biofilm. It has been shown that pretreatment of cells with polymyxin B leads to an increase of Ca2+ and Mg2+ ions in the culture medium, as detected by atomic absorption spectroscopy. The subsequent exposure to warnerin caused cell death with the loss of K+ ions and cell destruction with DNA and protein release. Thus, polymyxins display synergy with lantibiotics against planktonic and biofilm cells of E. coli, and can be used to overcome the resistance of Gram-negative bacteria to lantibiotics.


Assuntos
Bacteriocinas , Nisina , Polimixinas/farmacologia , Polimixina B/farmacologia , Antibacterianos/farmacologia , Nisina/farmacologia , Escherichia coli/genética , Plâncton , Bacteriocinas/farmacologia , Biofilmes , Íons , Testes de Sensibilidade Microbiana
11.
J Colloid Interface Sci ; 664: 275-283, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38471190

RESUMO

Planktonic bacterial presence in many industrial and environmental applications and personal health-care products is generally countered using antimicrobials. However, antimicrobial chemicals present an environmental threat, while emerging resistance reduces their efficacy. Suspended bacteria have no defense against mechanical attack. Therefore, we synthesized silica hexapods on an α-Fe2O3 core that can be magnetically-rotated to inflict lethal cell-wall-damage to planktonic Gram-negative and Gram-positive bacteria. Hexapods possessed 600 nm long nano-spikes, composed of SiO2, as shown by FTIR and XPS. Fluorescence staining revealed cell wall damage caused by rotating hexapods. This damage was accompanied by DNA/protein release and bacterial death that increased with increasing rotational frequency up to 500 rpm. Lethal puncturing was more extensive on Gram-negative bacteria than on Gram-positive bacteria, which have a thicker peptidoglycan layer with a higher Young's modulus. Simulations confirmed that cell-wall-puncturing occurs at lower nano-spike penetration levels in the cell walls of Gram-negative bacteria. This approach offers a new way to kill bacteria in suspension, not based on antimicrobial chemicals.


Assuntos
Anti-Infecciosos , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Dióxido de Silício/farmacologia , Dióxido de Silício/metabolismo , Bactérias Gram-Positivas/metabolismo , Plâncton , Bactérias , Parede Celular
12.
Chemosphere ; 354: 141596, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484986

RESUMO

This paper presents the results of the research on the overall distribution of selenium (Se) in various aquatic compartments (water, sediment, plankton and macrophytes) at six selected sites of the Croatian part of the Drava and Danube rivers, the connected floodplain lake and the melioration channel system carried out in two sampling periods (flooding in June and the drought period in September). In addition, the physicochemical water properties, plankton composition and biomass were analysed. Our study revealed low mean Se contents in sediments and water, indicating Se deficiency in the studied freshwater systems. The physicochemical environment, including Se distribution, was primarily influenced by hydrology rather than site-specific biogeochemical and morphological characteristics. The flooding period was characterised by higher Se content in water and higher transparency, nitrate and total nitrogen concentrations than drought conditions. At the river sites, sediment Se content was the highest during the flood period, while at all other sites, higher concentrations were found during the drought, reaching the maximum in the lake. Although Se concentrations were below the threshold for aquatic ecotoxicity, they increased in the following order: water (0.021-0.187 µg Se L-1) < sediments (0.005-0.352 mg Se kg-1) < macrophytes (0.010-0.413 mg Se kg-1) < plankton (0.044-0.518 mg Se kg-1) indicating its possible biomagnification at the bottom of the food chain. Species known for high Se accumulation potential dominated the biomass of the main plankton groups and the composition of the macrophyte community, which may provide a more sensitive and accurate steady-state compartment monitor for Se assessment in freshwater biotopes.


Assuntos
Selênio , Selênio/análise , Plâncton , Cadeia Alimentar , Lagos , Água/análise , Ecossistema
13.
Microbiol Spectr ; 12(4): e0242423, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488393

RESUMO

Microeukaryotic plankton (0.2-200 µm), which are morphologically and genetically highly diverse, play a crucial role in ocean productivity and carbon consumption. The Pacific Ocean (PO), one of the world's largest oligotrophic regions, remains largely unexplored in terms of the biogeography and biodiversity of microeukaryotes based on large-scale sampling. We investigated the horizontal distribution of microeukaryotes along a 16,000 km transect from the west to the east of the PO. The alpha diversity indices showed a distinct decreasing trend from west to east, which was highly correlated with water temperature. The microeukaryotic community, which was clustered into the western, central, and eastern PO groups, displayed a significant distance-decay relationship. Syndiniales, a lineage of parasitic dinoflagellates, was ubiquitously distributed along the transect and dominated the community in terms of both sequence and zero-radius operational taxonomic unit (ZOTU) proportions. The prevailing dominance of Syndiniales-affiliated ZOTUs and their close associations with dinoflagellates, diatoms, and radiolarians, as revealed by SparCC correlation analysis, suggested that parasitism may be an important trophic strategy in the surface waters of the PO. Geographical distance and temperature were the most important environmental factors that significantly correlated with community structure. Overall, our study sheds more light on the distribution pattern of both alpha and beta diversities of microeukaryotic communities and highlighted the importance of parasitisms by Syndiniales across the tropical PO.IMPORTANCEUnderstanding the biogeographical and biodiversity patterns of microeukaryotic communities is essential to comprehending their roles in biogeochemical cycling. In this study, planktonic microeukaryotes were collected along a west-to-east Pacific Ocean transect (ca. 16,000 km). Our study revealed that the alpha diversity indices were highly correlated with water temperature, and the microeukaryotic communities displayed a distinct geographical distance-driven pattern. The predominance of the parasitic dinoflagellate lineage Syndiniales and their close relationship with other microeukaryotic groups suggest that parasitism may be a crucial survival strategy for microeukaryotes in the surface waters of the Pacific Ocean. Our findings expand our understanding of the biodiversity and biogeographical pattern of microeukaryotes and highlight the significance of parasitic Syndiniales in the surface ocean.


Assuntos
Diatomáceas , Plâncton , Oceano Pacífico , Biodiversidade , Água , Ecossistema
14.
Mar Pollut Bull ; 201: 116180, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430677

RESUMO

The Sambia Peninsula (Kaliningrad region) is historically well known for its amber mining. The 2019 year was the last year of direct overburden disposal into the Baltic Sea as a part of technological amber mining process. The extremely high-suspended particulate matter concentrations during that disposal were recorded immediately after the discharge of significant volumes of pulp and reached 200 mg/L. The impact of pulp discharge had sequentially suppressed plankton communities development due to the high content of suspended solids and afterwards stimulated plankton development due to the glauconite infusion. Cladocera were the most sensitive group to the effects of suspended matter. According to the preliminary forecast, when the pulp discharge stops, the restoration of plankton communities may take from 1 to 2 seasons to 1 year for different groups. This is due to the timing of the removal of fine suspended particulate matter from sediments and the possibility of secondary entry during resuspension.


Assuntos
Âmbar , Ecossistema , Plâncton , Material Particulado , Países Bálticos , Monitoramento Ambiental , Sedimentos Geológicos
15.
Harmful Algae ; 133: 102605, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485446

RESUMO

Biotic interactions are a key factor in the development of harmful algal blooms. Recently, a lower abundance of planktonic dinoflagellates has been reported in areas dominated by seagrass beds, suggesting a negative interaction between both groups of organisms. The interaction between planktonic dinoflagellates and marine phanerogams, as well as the way in which bacteria can affect this interaction, was studied in two experiments using a non-axenic culture of the toxic dinoflagellate Alexandrium minutum exposed to increasing additions of eelgrass (Zostera marina) exudates from old and young leaves and to the presence or absence of antibiotics. In these experiments, A. minutum abundance, growth rate and photosynthetic efficiency (Fv/Fm), as well as bacterial abundance, were measured every 48 h. Toxin concentration per cell was determined at the end of both experiments. Our results demonstrated that Z. marina exudates reduced A. minutum growth rate and, in one of the experiments, also the photosynthetic efficiency. These results are not an indirect effect mediated by the bacteria in the culture, although their growth modify the magnitude of the negative impact on the dinoflagellate growth rate. No clear pattern was observed in the variation of toxin production with the treatments.


Assuntos
Dinoflagelados , Zosteraceae , Dinoflagelados/fisiologia , Proliferação Nociva de Algas , Fotossíntese , Toxinas Marinhas/toxicidade , Plâncton/metabolismo , Bactérias/metabolismo
16.
Sci Total Environ ; 923: 171428, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438045

RESUMO

Plastic pollution in the oceans is increasing, yet most global sea surface data is collected using plankton nets which limits our knowledge of the smaller and more bioaccessible size fraction of microplastics (<5 mm). We sampled the biodiverse coastal waters of the Galapagos Island of San Cristobal, comparing two different microplastic sampling methodologies; 1 l whole seawater grab samples filtered to 1.2 µm and sea surface plankton tows with a net mesh size of 200 µm. Our data reveal high concentrations of microplastics in Galapagos coastal waters surrounding the urban area, averaging 11.5 ± 1.48 particles l-1, with a four-order of magnitude increase in microplastic abundance observed using grab sampling compared with 200 µm plankton nets. This increase was greater when including anthropogenic cellulose particles, averaging 19.8 ± 1.86 particles l-1. Microplastic and anthropogenic cellulose particles smaller than 200 µm comprised 44 % of the particles from grab samples, suggesting previous estimates of microplastic pollution based on plankton nets likely miss and therefore underestimate these smaller particles. The particle characteristics and distribution of these smaller particles points strongly to a local input of cellulosic fibres in addition to the microplastic particles transported longer distances via the Humbolt current found across the surface seawater of the Galapagos. Improving our understanding of particle characteristics and distributions to highlight likely local sources will facilitate the development of local mitigation and management plans to reduce the input and impacts of microplastics to marine species, not just in the Galapagos but globally.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Plâncton , Celulose
17.
Sci Total Environ ; 927: 172105, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556011

RESUMO

A digestibility enhancing effect of natural food on stomachless fish model (Cyprinus carpio) was verified by fluorogenic substrate assays of enzymatic activities in experimental pond carp gut flush and planktonic food over a full vegetative season. Then compared with size-matched conspecific grown artificially (tank carp) and an advanced omnivore species possessing true stomach (tilapia, Oreochromis niloticus). Results suggested activities of digestive enzymes (except amylolytic) were significantly higher in pond carp (p ≤ 0.05) than in the size-matched tank carp. Even compared to tilapia, pond carp appeared superior (p < 0.05; proteolytic or chitinolytic activities) or comparable (p > 0.05; phosphatase or cellulolytic activities). Amylolytic, chitinolytic, and phosphatases activities in pond carp gut significantly increased (p ≤ 0.01) over season. Several orders-of-magnitude higher enzymatic activities were detected in planktonic natural food than expressed in carp gut. Amino acid markers in planktonic food revealed a higher share of zooplankton (microcrustaceans), but not phytoplankton, synchronized with higher activities of complex polysaccharide-splitting enzymes (cellulolytic and chitinolytic) in fish gut. Periods of clear water phase low in chlorophyll-a and nutrients, but high in certain zooplankton (preferably cladocerans), may create a synergistic digestibility effect in pond carp. We conclude aquatic ecosystem components (natural food, water, microbiota) enhance fishes' hydrolyzing capabilities of C/N/P macromolecules and even their complex polymers such as cellulose, chitin, and maybe phytate (to be validated), to the extent that being stomachless is not an issue. Aquatic nutritional ecologists may consider that laboratory-based understandings of digestibility may underestimate digestion efficiency of free-ranging fish in ponds or lakes.


Assuntos
Carpas , Ecossistema , Animais , Carpas/fisiologia , Carpas/metabolismo , Digestão/fisiologia , Plâncton/fisiologia , Zooplâncton/fisiologia , Fitoplâncton/fisiologia
18.
J Hazard Mater ; 469: 133942, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452675

RESUMO

The spread of bacteriophage-borne antibiotic resistance genes (ARGs) poses a realistic threat to human health. Nanomaterials, as important emerging pollutants, have potential impacts on ARGs dissemination in aquatic environments. However, little is known about its role in transductive transfer of ARGs mediated by bacteriophage in the presence of microplastics. Therefore, this study comprehensively investigated the influence of silver nanoparticles (AgNPs) on the transfer of bacteriophage-encoded ARGs in planktonic Escherichia coli and microplastic-attached biofilm. AgNPs exposure facilitated the phage transduction in planktonic and microplastic-attached bacteria at ambient concentration of 0.1 mg/L. Biological binding mediated by phage-specific recognition, rather than physical aggregation conducted by hydrophilicity and ζ-potential, dominated the bacterial adhesion of AgNPs. The aggregated AgNPs in turn resulted in elevated oxidative stress and membrane destabilization, which promoted the bacteriophage infection to planktonic bacteria. AgNPs exposure could disrupt colanic acid biosynthesis and then reduce the thickness of biofilm on microplastics, contributing to the transfer of phage-encoded ARGs. Moreover, the roughness of microplastics also affected the performance of AgNPs on the transductive transfer of ARGs in biofilms. This study reveals the compound risks of nanomaterials and microplastics in phage-borne ARGs dissemination and highlights the complexity in various environmental scenarios.


Assuntos
Bacteriófagos , Nanopartículas Metálicas , Humanos , Microplásticos , Plásticos , Prata/toxicidade , Bacteriófagos/genética , Plâncton/genética , Bactérias/genética , Antibacterianos/farmacologia , Genes Bacterianos , Escherichia coli/genética
19.
Proc Natl Acad Sci U S A ; 121(11): e2312822121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437535

RESUMO

The composition of ecological communities varies not only between different locations but also in time. Understanding the fundamental processes that drive species toward rarity or abundance is crucial to assessing ecosystem resilience and adaptation to changing environmental conditions. In plankton communities in particular, large temporal fluctuations in species abundances have been associated with chaotic dynamics. On the other hand, microbial diversity is overwhelmingly sustained by a "rare biosphere" of species with very low abundances. We consider here the possibility that interactions within a species-rich community can relate both phenomena. We use a Lotka-Volterra model with weak immigration and strong, disordered, and mostly competitive interactions between hundreds of species to bridge single-species temporal fluctuations and abundance distribution patterns. We highlight a generic chaotic regime where a few species at a time achieve dominance but are continuously overturned by the invasion of formerly rare species. We derive a focal-species model that captures the intermittent boom-and-bust dynamics that every species undergoes. Although species cannot be treated as effectively uncorrelated in their abundances, the community's effect on a focal species can nonetheless be described by a time-correlated noise characterized by a few effective parameters that can be estimated from time series. The model predicts a nonunitary exponent of the power-law abundance decay, which varies weakly with ecological parameters, consistent with observation in marine protist communities. The chaotic turnover regime is thus poised to capture relevant ecological features of species-rich microbial communities.


Assuntos
Microbiota , Resiliência Psicológica , Emigração e Imigração , Plâncton , Fatores de Tempo
20.
Mar Environ Res ; 197: 106451, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492505

RESUMO

Eukaryotic communities play an important role in the coastal ecosystem of Xiangshan Bay, a narrow semi-closed bay famous for fisheries and marine farming. However, information on the diversity and composition of eukaryotic communities in Xiangshan Bay remains unclear. In this study, the metabarcoding approach was utilized to comprehensively investigate the eukaryotic plankton community structure and dominant taxa, particularly eukaryotic microalgae, in the Xiangshan Bay over a period of four months in 2018. The results showed that the three major phyla were Arthropoda, Chlorophyta, and Bacillariophyta. The richness indices revealed that species richness peaked in February and was at its lowest in May. Diversity indices showed that the samples collected in May had the lowest diversity. Centropages was detected in the samples of all months, however, its highest dominance was observed in the samples collected in February. In addition, compared to other months, a greater proportion of eukaryotic microalgae was witnessed in March. The three eukaryotic algae with highest abundances in March were Cyclotella, Prorocentrum, and Thalassiosira. Moreover, high diversity of pico-sized (0.2-2.0 µm) phytoplankton (which are often easily missed by microscopy) was discovered in this study by using metabarcoding approach. This study highlights the strength and significance of the metabarcoding approach to uncover a large number of eukaryotic species which remains undetectable during application of conventional approaches. The findings of this study reveals that the eukaryotic community structure varies noticeably in both time and space throughout sampling period, with temperature being the most important environmental factor influencing these changes. This study lays a solid foundation to understand eukaryotic plankton composition, temporal and spatial dynamics and the distribution mechanism of eukaryotic plankton community in Xiangshan Bay, providing theoretical reference for further studies related to marine ecology.


Assuntos
Diatomáceas , Dinoflagelados , Microalgas , Ecossistema , Baías , Fitoplâncton , Plâncton , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...